

Features

- Sealed housing conforms to IP6K9K
- Robust design
- · Variety of configuration options
- 6G shock and 4G vibration resistant

Applications

- Commercial vehicles
- Bus
- Lift truck
- · Ground support equipment
- Construction and agricultural vehicles

KISSLING BI-STABLE RELAYS WITH INTERNAL CONTROL ELECTRONICS

Series 31 / INIT - from TE Connectivity (TE)

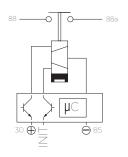
Our series 31 bi-stable power relay with internal control electronics is based on the Series 30 industrial relay and has all of the same quality mechanical and electrical switching characteristics - but also features additional electronic functions.

This relay is particularly well suited for battery management and power distribution applications on commercial vehicles, buses, construction & agricultural vehicles, aircraft, ground support equipment and lift trucks.

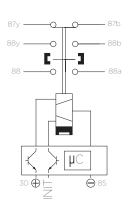
Our robust design of our bi-stable relays provides a sealing rate of IP67 and IP6K9K (steam pressure cleaning) in accordance with IEC 60529 and DIN 40050-9. The series 31 includes power relays in nominal voltages of 12 & 24 V and nominal continuous amperages of 300 Amps. Contact voltages up to 250VDC with magentical blowout (>40VDC).

Electronic INIT-Control

The basic principle of the relay is a reliability proven two coil device with a "Pull In" and "Drop Out" coil with a powerless permanent magnetic holding.


At the clamp 30(+) and 85(-) applied the permanent-supply. The selection ensured powerless from INIT-imput.

A HIGH-level activate the relay, a LOW-level disconnect it. If the monostable activation keep use, the INIT- activation is an advantage.


The electronics are short-circuit protected and feature safety coil selection, reverse polarity protection and coil cancellation. The integrated undervoltage protector secures the relay against undefined operating conditions.

Circuits

NO-Contact Standard type

NO-Contact Auxiliary contact / Magnetic blowout

Specification

10	hn	ıica	 1	+ -
- 1 -	 	IICa	 a	La

Temperature range	-40°C to +85°C
Protection	IEC 60529 / DIN 40050-9 / IP67 (0,2bar; 1min) and IP6K9K
Shock	6g / 11msec
Vibration	4g / 50 - 2000Hz
Thread sizes / Torque	M4 = 2.0 - 2.2Nm M10 = 15 - 20Nm

Electrical Characteristics

Min. Insulation resistance	ΙΟΟΜΩ
After live or environment	50ΜΩ
Dielectric withstanding voltage	1050VAC / 1min at 50Hz
Max. Contact drop, initial	150mV
Contact drop after life test	175mV
Continuous current	300A
Overload	2400A - 1sec / 600A - 20sec
Quiescent current	approx. 2mA

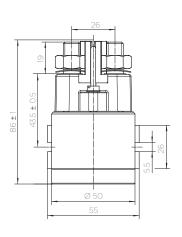
Rated contact load	12 and 24 / 28 VDC	
Resistive load	50.000 cycles 300A	
Mechanical life	100 000 cycles	

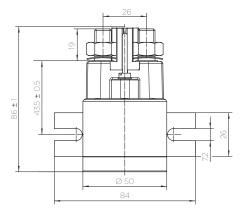
Coil Data	12VDC	24/28VDC
Voltage range	9-16VDC	18-32VDC
Nominal voltage	12VDC	28VDC
Pull in current	5.7A, 50ms	2.9A, 50ms
Drop out current	6.0A, 50ms	3.0A, 50ms

Control input INIT

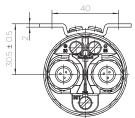
Control signal	active high
Drop out current	LOW < 0,5VDC / HIGH > 5VDC LOW < 5VDC / HIGH > 9VDC

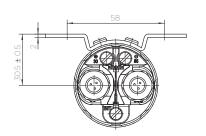
Operating times

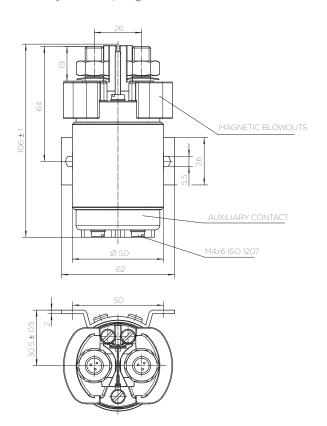

Pick up incl. bounce and running time μC	approx. 15Umsec
Drop out incl. running time μC	approx. 150msec
Wire Section	min. 95mm² / 0.147 sq.inch / AWG 4-0
Mounting position	optional


Technical drawings

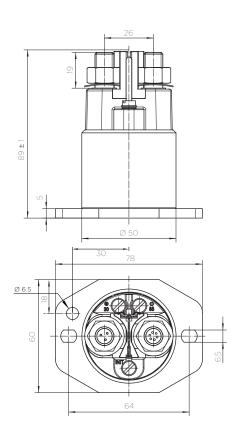
Standard side mounting

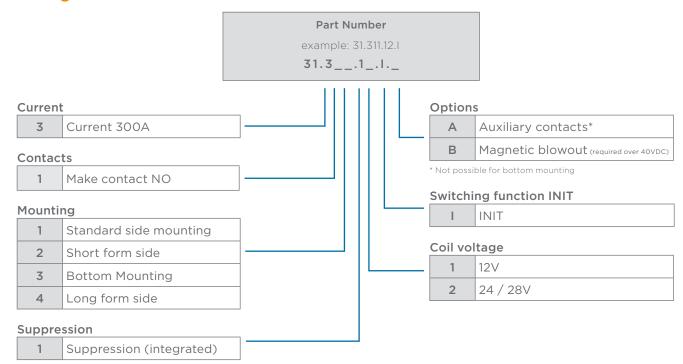

MIO DIN 934 Optional REPLACEABLE BARRIER BIO DIN 137 M4x6 ISO 1207


Short form side mounting

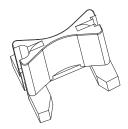


Long form side mounting




Options:Auxiliary contacts, magnetic blowouts

Bottom mounting



Ordering Information

Accessories

Replaceable barrier 29-200-55

te.com

TE Connectivity, TE, TE connectivity (logo), KISSLING (logo) and KISSLING (word) are trademarks owned or licensed by the TE Connectivity family of companies. All other logos, products and/or company names referred to herein might be trademarks of their respective owners.

The information given herein, including drawings, illustrations and schematics which are intended for illustration purposes only, is believed to be reliable. However, TE Connectivity makes no warranties as to its accuracy or completeness and disclaims any liability in connection with its use. TE Connectivity's obligations shall only be as set forth in TE Connectivity's Standard Terms and Conditions of Sale for this product and in no case will TE Connectivity be liable for any incidental, indirect or consequential damages arising out of the sale, resale, use or misuse of the product. Users of TE Connectivity products should make their own evaluation to determine the suitability of each such product for the specific application.

© 2020 TE Connectivity | All Rights Reserved. K1166719 | Version 08/2020